Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.281
Filtrar
1.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 470-475, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660854

RESUMO

OBJECTIVE: To investigate the influence of novel CRM1 inhibitor KPT-330 on the autophagy of mantle cell lymphoma (MCL) cells, and effect of KPT-330 on the prolifiration of MCL cells in the presence or absence of autophagy inhibitor. METHODS: CCK-8 assay was used to detect the effect of KPT-330 on MCL cell lines Z-138, Jeko-1, Granta-519, Rec-1. The effect of KPT-330 on autophagy features were determined by detecting acidic vesicular organelles (AVO) by MDC staining under fluorescence microscope and detecting protein expression of LC3B-II assessed by Western blot. Further combined application of lysosomal inhibitor Chloroquine (CQ) was used to observe its effect on the increase of LC3B-Ⅱ caused by KPT-330. CalcuSyn 2.0 software was used to detected the Combination index (CI) of KPT-330 combined with CQ. RESULTS: The proliferation of MCL cell lines (Z-138, Jeko-1, Grant-519, Rec-1) could be inhibited by KPT-330 in a dose-dependent manner (r =0.930, 0.946, 0.691, 0.968 respectively). The number of acidic vesicular organelles (AVO) and the expression of LC3B-II were increased in KPT-330 treated Jeko-1 and Granta-519 cells in a dose-dependent manner (r Jeko-1=0.993, r Granta-519=0.971). LC3B-II protein amounts still increased upon KPT-330 treatment with the existence of lysosomal inhibitor CQ in Jeko-1 and Granta-519 cells, which was higher than CQ or KPT-330 single drug group. The combination of KPT-330 and CQ produced the synergistic effects on cells proliferation inhibition with CalcuSyn 2.0 analysis. CONCLUSION: KPT-330 can inhibit MCL cell proliferation and induce autophagy. KPT-330 combined with autophagy inhibitor CQ could produce synergistic anti MCL effects, providing experimental basis for clinical combination therapy.


Assuntos
Autofagia , Proliferação de Células , Linfoma de Célula do Manto , Linfoma de Célula do Manto/tratamento farmacológico , Humanos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloroquina/farmacologia
2.
Parasite Immunol ; 46(3): e13030, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498004

RESUMO

In previous studies, the inhibitory effect of chloroquine on NLRP3 inflammasome and heme production was documented. This may be employed as a double-bladed sword in schistosomiasis (anti-inflammatory and parasiticidal). In this study, chloroquine's impact on schistosomiasis mansoni was investigated. The parasitic load (worm/egg counts and reproductive capacity index [RCI]), i-Nos/Arg-1 expression, splenomegaly, hepatic insult and NLRP3-immunohistochemical expression were assessed in infected mice after receiving early and late repeated doses of chloroquine alone or dually with praziquantel. By early treatment, the least RCI was reported in dually treated mice (41.48 ± 28.58) with a significant reduction in worm/egg counts (3.50 ± 1.29/2550 ± 479.58), compared with either drug alone. A marked reduction in the splenic index was achieved by prolonged chloroquine administration (alone: 43.15 ± 5.67, dually: 36.03 ± 5.27), with significantly less fibrosis (15 ± 3.37, 14.25 ± 2.22) than after praziquantel alone (20.5 ± 2.65). Regarding inflammation, despite the praziquantel-induced significant decrease in NLRP3 expression, the inhibitory effect was marked after dual and chloroquine administration (liver: 3.13 ± 1.21/3.45 ± 1.23, spleen: 5.7 ± 1.6/4.63 ± 2.41). i-Nos RNA peaked with early/late chloroquine administration (liver: 68.53 ± 1.8/57.78 ± 7.14, spleen: 63.22 ± 2.06/62.5 ± 3.05). High i-Nos echoed with a parasiticidal and hepatoprotective effect and may indicate macrophage-1 polarisation. On the flip side, the chloroquine-induced low Arg-1 seemed to abate immune tolerance and probably macrophage-2 polarisation. Collectively, chloroquine synergised the praziquantel-schistosomicidal effect and minimised tissue inflammation, splenomegaly and hepatic fibrosis.


Assuntos
Doenças dos Roedores , Esquistossomose mansoni , Animais , Camundongos , Cloroquina/farmacologia , Regulação para Baixo , Reposicionamento de Medicamentos , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Carga Parasitária , Praziquantel/farmacologia , Esquistossomose mansoni/tratamento farmacológico , Esplenomegalia
3.
Mol Cell Endocrinol ; 586: 112196, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462123

RESUMO

Pituitary tumors (PTs) represent about 10% of all intracranial tumors, and most are benign. However, some PTs exhibit continued growth despite multimodal therapies. Although temozolomide (TMZ), an alkylating chemotherapeutic agent, is a first-line medical treatment for aggressive PTs, some PTs are resistant to TMZ. Existing literature indicated the involvement of autophagy in cell growth in several types of tumors, including PTs, and autophagy inhibitors have anti-tumor effects. In this study, the expression of several autophagy-inducible genes, including Atg3, Beclin1, Map1lc3A, Map1lc3b, Ulk1, Wipi2, and Tfe3 in two PT cell lines, the mouse corticotroph AtT-20 cells and the rat mammosomatotroph GH4 cells were identified. Down regulation of Tfe3, a master switch of basal autophagy, using RNA interference, suppressed cell proliferation in AtT-20 cells, suggesting basal autophagy contributes to the maintenance of cellular functions in PT cells. Expectedly, treatment with bafilomycin A1, an autophagy inhibitor, suppressed cell proliferation, increased the cleavage of PARP1, and reduced ACTH production in AtT-20 cells. Treatment with two additional autophagy inhibitors, chloroquine (CQ) and monensin, demonstrated similar effects on cell proliferation, apoptosis, and ACTH production in AtT-20 cells. Also, treatment with CQ suppressed cell proliferation and growth hormone production in GH4 cells. Moreover, the combination of CQ and TMZ had an additive effect on the inhibition of cell proliferation in AtT-20 and GH4 cells. The additive effect of anti-cancer drugs such as CQ alone or in combination with TMZ may represent a novel therapeutic approach for PTs, in particular tumors with resistance to TMZ.


Assuntos
Neoplasias Hipofisárias , Ratos , Camundongos , Animais , Neoplasias Hipofisárias/tratamento farmacológico , Linhagem Celular Tumoral , Cloroquina/farmacologia , Temozolomida/farmacologia , Proliferação de Células , Apoptose , Autofagia , Hormônio Adrenocorticotrópico/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos
5.
Biomed Pharmacother ; 173: 116346, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428312

RESUMO

BACKGROUND: This study aimed to investigate the effects of the combination of Epimedii Folium (EF) and Ligustri Lucidi Fructus (LLF) on regulating apoptosis and autophagy in senile osteoporosis (SOP) rats. METHODS: Firstly, we identified the components in the decoction and drug-containing serum of EL (EF&LLF) by Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Secondly, SOP rats were treated with EF, LLF, EL and caltrate to evaluate the advantages of EL. Finally, H2O2-, chloroquine-, and MHY1485-induced osteoblasts were treated with different doses of EL to reveal the molecular mechanism of EL. We detected bone microstructure, oxidative stress levels, ALP activity and the expressions of Bax, Bcl-2, caspase3, P53, Beclin-1, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, mTOR, and LC3 in vivo and in vitro. RESULTS: 36 compounds in EL decoction and 23 in EL-containing serum were identified, including flavonoids, iridoid terpenoids, phenylethanoid glycosides, polyols and triterpenoids. EL could inhibit apoptosis activity and increase ALP activity. In SOP rats and chloroquine-inhibited osteoblasts, EL could improve bone tissue microstructure and osteoblasts functions by upregulating Bcl-2, Beclin1, and LC3-II/LC3-I, while downregulating p53 in all treatment groups. In H2O2-induced osteoblasts, EL could upregulate the protein and mRNA expressions of Bcl-2 while downregulate LC3-II/LC3-I, p53 and Beclin1. Besides, EL was able to down-regulate PI3K/AKT/mTOR pathway which activated in SOP rats and MHY1485-induced osteoblasts. CONCLUSIONS: These findings demonstrate that EL with bone protective effects on SOP rats by regulating autophagy and apoptosis via PI3K/Akt/mTOR signaling pathway, which might be an alternative medicine for the treatment of SOP.


Assuntos
Medicamentos de Ervas Chinesas , Ligustrum , Osteoporose , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligustrum/química , Ligustrum/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Beclina-1/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Osteoporose/tratamento farmacológico , Osteoblastos , Apoptose , Autofagia , Cloroquina/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
6.
Bioorg Med Chem Lett ; 103: 129701, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484804

RESUMO

Malaria, a devastating disease, has claimed numerous lives and caused considerable suffering, with young children and pregnant women being the most severely affected group. However, the emergence of multidrug-resistant strains of Plasmodium and the adverse side effects associated with existing antimalarial drugs underscore the urgent need for the development of novel, well-tolerated, and more efficient drugs to combat this global health threat. To address these challenges, six new hydantoins derivatives were synthesized and evaluated for their in vitro antiplasmodial activity. Notably, compound 2c exhibited excellent inhibitory activity against the tested Pf3D7 strain, with an IC50 value of 3.97 ± 0.01 nM, three-fold better than chloroquine. Following closely, compound 3b demonstrated an IC50 value of 27.52 ± 3.37 µM against the Pf3D7 strain in vitro. Additionally, all the hydantoins derivatives tested showed inactive against human MCR-5 cells, with an IC50 value exceeding 100 µM. In summary, the hydantoin derivative 2c emerges as a promising candidate for further exploration as an antiplasmodial compound.


Assuntos
Antimaláricos , Hidantoínas , Malária , Gravidez , Criança , Feminino , Humanos , Pré-Escolar , Plasmodium falciparum , Cloroquina/farmacologia , Malária/tratamento farmacológico , Hidantoínas/farmacologia
7.
Cell Signal ; 118: 111125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38432574

RESUMO

BACKGROUND: Parkinson's disease patients on chronic levodopa often suffer from motor complications, which tend to reduce their quality of life. Levodopa-induced dyskinesia (LID) is one of the most prevalent motor complications, often characterized by abnormal involuntary movements, and the pathogenesis of LID is still unclear but recent studies have suggested the involvement of autophagy. METHODS: The onset of LID was mimicked by chronic levodopa treatment in a unilateral 6-hydroxydopamine (6-OHDA) -lesion rat model. Overexpression of ΔFosB in HEK293 cells to mimic the state of ΔFosB accumulation. The modulation of the AMP-activated protein kinase (AMPK)-mediated autophagy pathway using by metformin, AICAR (an AMPK activator), Compound C (an AMPK inhibitor) and chloroquine (an autophagy pathway inhibitor). The severity of LID was assessed by axial, limb, and orofacial (ALO) abnormal involuntary movements (AIMs) score and in vivo electrophysiology. The activity of AMPK pathway as well as autophagy markers and FosB-ΔFosB levels were detected by western blotting. RT-qPCR was performed to detect the transcription level of FosB-ΔFosB. The mechanism of autophagy dysfunction was further explored by immunofluorescence and transmission electron microscopy. RESULTS: In vivo experiments demonstrated that chronic levodopa treatment reduced AMPK phosphorylation, impaired autophagosome-lysosomal fusion and caused FosB-ΔFosB accumulation in the striatum of PD rats. Long-term metformin intervention improved ALO AIMs scores as well as reduced the mean power of high gamma (hγ) oscillations and the proportion of striatal projection neurons unstable in response to dopamine for LID rats. Moreover, the intervention of metformin promoted AMPK phosphorylation, ameliorated the impairment of autophagosome-lysosomal fusion, thus, promoting FosB-ΔFosB degradation to attenuate its accumulation in the striatum of LID rats. However, the aforementioned roles of metformin were reversed by Compound C and chloroquine. The results of in vitro studies demonstrated the ability of metformin and AICAR to attenuate ΔFosB levels by promoting its degradation, while Compound C and chloroquine could block this effect. CONCLUSIONS: In conclusion, our results suggest that long-term metformin treatment could promote ΔFosB degradation and thus attenuate the development of LID through activating the AMPK-mediated autophagy pathway. Overall, our results support the AMPK-mediated autophagy pathway as a novel therapeutic target for LID and also indicate that metformin is a promising therapeutic candidate for LID.


Assuntos
Discinesia Induzida por Medicamentos , Metformina , Humanos , Ratos , Animais , Levodopa/farmacologia , Levodopa/uso terapêutico , Antiparkinsonianos/farmacologia , Proteínas Quinases Ativadas por AMP , Células HEK293 , Qualidade de Vida , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Oxidopamina/uso terapêutico , Autofagia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Metformina/farmacologia , Modelos Animais de Doenças
8.
Parasites Hosts Dis ; 62(1): 42-52, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38443769

RESUMO

Antimalarial drugs are an urgently need and crucial tool in the campaign against malaria, which can threaten public health. In this study, we examined the cytotoxicity of the 9 antimalarial compounds chemically synthesized using SKM13-2HCl. Except for SKM13-2HCl, the 5 newly synthesized compounds had a 50% cytotoxic concentration (CC50) > 100 µM, indicating that they would be less cytotoxic than SKM13-2HCl. Among the 5 compounds, only SAM13-2HCl outperformed SKM13-2HCl for antimalarial activity, showing a 3- and 1.3-fold greater selective index (SI) (CC50/IC50) than SKM13-2HCl in vitro against both chloroquine-sensitive (3D7) and chloroquine -resistant (K1) Plasmodium falciparum strains, respectively. Thus, the presence of morpholine amide may help to effectively suppress human-infectious P. falciparum parasites. However, the antimalarial activity of SAM13-2HCl was inferior to that of the SKM13-2HCl template compound in the P. berghei NK65-infected mouse model, possibly because SAM13-2HCl had a lower polarity and less efficient pharmacokinetics than SKM13-2HCl. SAM13-2HCl was more toxic in the rodent model. Consequently, SAM13-2HCl containing morpholine was selected from screening a combination of pharmacologically significant structures as being the most effective in vitro against human-infectious P. falciparum but was less efficient in vivo in a P. berghei-infected animal model when compared with SKM13-2HCl. Therefore, SAM13-2HCl containing morpholine could be considered a promising compound to treat chloroquine-resistant P. falciparum infections, although further optimization is crucial to maintain antimalarial activity while reducing toxicity in animals.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Camundongos , Animais , Humanos , Antimaláricos/farmacologia , Camundongos Endogâmicos ICR , Plasmodium berghei , Plasmodium falciparum , Cloroquina/farmacologia , Morfolinas , Amidas/farmacologia , Modelos Animais de Doenças
9.
J Alzheimers Dis ; 98(1): 301-318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427475

RESUMO

Background: Alzheimer's disease (AD) is characterized by disrupted proteostasis and macroautophagy (hereafter "autophagy"). The pharmacological agent suramin has known autophagy modulation properties with potential efficacy in mitigating AD neuronal pathology. Objective: In the present work, we investigate the impact of forebrain neuron exposure to suramin on the Akt/mTOR signaling pathway, a major regulator of autophagy, in comparison with rapamycin and chloroquine. We further investigate the effect of suramin on several AD-related biomarkers in sporadic AD (sAD)-derived forebrain neurons. Methods: Neurons differentiated from ReNcell neural progenitors were used to assess the impact of suramin on the Akt/mTOR signaling pathway relative to the autophagy inducer rapamycin and autophagy inhibitor chloroquine. Mature forebrain neurons were differentiated from induced pluripotent stem cells (iPSCs) sourced from a late-onset sAD patient and treated with 100µM suramin for 72 h, followed by assessments for amyloid-ß, phosphorylated tau, oxidative/nitrosative stress, and synaptic puncta density. Results: Suramin treatment of sAD-derived neurons partially ameliorated the increased p-Tau(S199)/Tau ratio, and fully remediated the increased glutathione to oxidized nitric oxide ratio, observed in untreated sAD-derived neurons relative to healthy controls. These positive results may be due in part to the distinct increases in Akt/mTOR pathway mediator p-p70S6K noted with suramin treatment of both ReNcell-derived and iPSC-derived neurons. Longer term neuronal markers, such as synaptic puncta density, were unaffected by suramin treatment. Conclusions: These findings provide initial evidence supporting the potential of suramin to reduce the degree of dysregulation in sAD-derived forebrain neurons in part via the modulation of autophagy.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/patologia , Suramina/farmacologia , Suramina/metabolismo , Proteínas tau/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peptídeos beta-Amiloides/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Prosencéfalo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Sirolimo/farmacologia , Cloroquina/metabolismo , Cloroquina/farmacologia
10.
Elife ; 122024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363295

RESUMO

The establishment and spread of antimalarial drug resistance vary drastically across different biogeographic regions. Though most infections occur in sub-Saharan Africa, resistant strains often emerge in low-transmission regions. Existing models on resistance evolution lack consensus on the relationship between transmission intensity and drug resistance, possibly due to overlooking the feedback between antigenic diversity, host immunity, and selection for resistance. To address this, we developed a novel compartmental model that tracks sensitive and resistant parasite strains, as well as the host dynamics of generalized and antigen-specific immunity. Our results show a negative correlation between parasite prevalence and resistance frequency, regardless of resistance cost or efficacy. Validation using chloroquine-resistant marker data supports this trend. Post discontinuation of drugs, resistance remains high in low-diversity, low-transmission regions, while it steadily decreases in high-diversity, high-transmission regions. Our study underscores the critical role of malaria strain diversity in the biogeographic patterns of resistance evolution.


Drug resistance among strains of the parasites that cause malaria is a growing problem for people relying on antimalarial drugs to protect them from the disease. This phenomenon is global yet exactly how resistance emerges, spreads and persists in a population often differs greatly between regions, which can complicate malaria control projects. For example, discontinuing the use of antimalarials can lead to the frequency of resistant strains declining in an area, such as Africa, but persisting at high levels in others, including Asia and South America. Gaining resistance often leads to parasites becoming less transmissible than other strains. When antimalarials are not used, sensitive strains usually outcompete their resistant counterparts. However, prolonged use of antimalarial drugs tends to eliminate susceptible strains, allowing the previously outcompeted resistant strains to dominate. The local dynamics of antimalarial resistance are also shaped by multiple other factors such as transmission levels (how common the disease is in the region), the type of antimalarial measures used (such as drugs and mosquito nets), or previous immunity the population may have developed to specific strains. While many computational models have been developed to capture these dynamics, they usually fail to include strain diversity ­ a parameter reflecting the number of malaria strains the immune system is exposed to. This parameter is important as parasites need to escape both host immunity and drugs in order to be successful. To address this gap, He, Chaillet, and Labbé created a computational model to investigate how strain diversity, transmission levels and other related factors influence antimalarial resistance. The model was used to explore how the frequency of resistant and susceptible strains changes over time once antimalarial drugs are rolled out and then halted. These analyses show that in areas with both low strain diversity and low transmission levels, susceptible parasites are more likely to be wiped out from the population, leading to a high frequency of resistant strains that persist after drugs are discontinued. However, in high diversity and high transmission regions, susceptible strains can remain in the population. Therefore, when drug treatments are stopped, resistance levels are more likely to drop due to these parasites outcompeting the drug-resistant ones. Overall, this work demonstrates how modelling approaches that include strain diversity can help inform public health decisions aimed at reducing antimalarial resistance. In particular, they can provide important insights into the control strategies that are best suited for a specific region, suggesting that in low transmission areas intensive drug treatment may contribute to resistance. Instead, preventative strategies such as eliminating mosquitos and preventing bites with bed nets may prove more beneficial at reducing transmission rates in such areas.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/parasitologia , Cloroquina/uso terapêutico , Resistência a Medicamentos/genética , África Subsaariana , Plasmodium falciparum/genética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia
11.
Front Cell Infect Microbiol ; 14: 1270060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410722

RESUMO

Background: Malaria has always been a serious infectious disease prevalent in the world. Antimalarial drugs such as chloroquine and artemisinin have been the main compounds used to treat malaria. However, the massive use of this type of drugs accelerates the evolution and spread of malaria parasites, leading to the development of resistance. A large number of related data have been published by researchers in recent years. CiteSpace software has gained popularity among us researchers in recent years, because of its ability to help us obtain the core information we want in a mass of articles. In order to analyze the hotspots and develop trends in this field through visual analysis, this study used CiteSpace software to summarize the available data in the literature to provide insights. Method: Relevant literature was collected from the Web of Science Core Collection (WOSCC) from 1 January 2015 to 29 March 2023. CiteSpace software and Microsoft Excel were used to analyze and present the data, respectively. Results: A total of 2,561 literatures were retrieved and 2,559 literatures were included in the analysis after the removal of duplicates. An irrefutable witness of the ever-growing interest in the topic of antimalarial drug resistance could be expressed by the exponentially increased number of publications and related citations from 2015 to 2022, and its sustained growth trend by 2023. During the past 7 years, USA, Oxford University, and David A Fidock are the country, institution, and author with the most publications in this field of research, respectively. We focused on the references and keywords from literature and found that the research and development of new drugs is the newest hotspot in this field. A growing number of scientists are devoted to finding new antimalarial drugs. Conclusion: This study is the first visual metrological analysis of antimalarial drug resistance, using bibliometric methods. As a baseline information, it is important to analyze research output published globally on antimalarial drug resistance. In order to better understand the current research situation and future research plan agenda, such baseline data are needed accordingly.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Bibliometria , Malária/tratamento farmacológico , Malária/epidemiologia
12.
Antimicrob Agents Chemother ; 68(4): e0120423, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38411047

RESUMO

Primaquine (PQ) is the main drug used to eliminate dormant liver stages and prevent relapses in Plasmodium vivax malaria. It also has an effect on the gametocytes of Plasmodium falciparum; however, it is unclear to what extent PQ affects P. vivax gametocytes. PQ metabolism involves multiple enzymes, including the highly polymorphic CYP2D6 and the cytochrome P450 reductase (CPR). Since genetic variability can impact drug metabolism, we conducted an evaluation of the effect of CYP2D6 and CPR variants on PQ gametocytocidal activity in 100 subjects with P. vivax malaria. To determine gametocyte density, we measured the levels of pvs25 transcripts in samples taken before treatment (D0) and 72 hours after treatment (D3). Generalized estimating equations (GEEs) were used to examine the effects of enzyme variants on gametocyte densities, adjusting for potential confounding factors. Linear regression models were adjusted to explore the predictors of PQ blood levels measured on D3. Individuals with the CPR mutation showed a smaller decrease in gametocyte transcript levels on D3 compared to those without the mutation (P = 0.02, by GEE). Consistent with this, higher PQ blood levels on D3 were associated with a lower reduction in pvs25 transcripts. Based on our findings, the CPR variant plays a role in the persistence of gametocyte density in P. vivax malaria. Conceptually, our work points to pharmacogenetics as a non-negligible factor to define potential host reservoirs with the propensity to contribute to transmission in the first days of CQ-PQ treatment, particularly in settings and seasons of high Anopheles human-biting rates.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária Vivax , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária Vivax/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , NADPH-Ferri-Hemoproteína Redutase , Cloroquina/farmacologia , Citocromo P-450 CYP2D6/genética , Artemisininas/farmacologia , Primaquina/farmacologia , Primaquina/uso terapêutico , Malária/tratamento farmacológico , Plasmodium falciparum , Plasmodium vivax/genética
13.
Toxicol Lett ; 393: 84-95, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311193

RESUMO

Hydroxychloroquine (HCQ), a derivative of chloroquine (CQ), is an antimalarial and antirheumatic drug. Since there is limited data available on the genotoxicity of HCQ, in the current study, we used a battery of in vitro assays to systematically examine the genotoxicity of HCQ in human lymphoblastoid TK6 cells. We first showed that HCQ is not mutagenic in TK6 cells up to 80 µM with or without exogenous metabolic activation. Subsequently, we found that short-term (3-4 h) HCQ treatment did not cause DNA strand breakage as measured by the comet assay and the phosphorylation of histone H2A.X (γH2A.X), and did not induce chromosomal damage as determined by the micronucleus (MN) assay. However, after 24-h treatment, both CQ and HCQ induced comparable and weak DNA damage and MN formation in TK6 cells; upregulated p53 and p53-mediated DNA damage responsive genes; and triggered apoptosis and mitochondrial damage that may partially contribute to the observed MN formation. Using a benchmark dose (BMD) modeling analysis, the lower 95% confidence limit of BMD50 values (BMDL50) for MN induction in TK6 cells were about 19.7 µM for CQ and 16.3 µM for HCQ. These results provide additional information for quantitative genotoxic risk assessment of these drugs.


Assuntos
Hidroxicloroquina , Proteína Supressora de Tumor p53 , Humanos , Hidroxicloroquina/toxicidade , Hidroxicloroquina/uso terapêutico , Proteína Supressora de Tumor p53/genética , Dano ao DNA , Cloroquina/toxicidade , Ensaio Cometa
14.
ACS Infect Dis ; 10(3): 1000-1022, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38367280

RESUMO

In this study, we identified three novel compound classes with potent activity against Plasmodium falciparum, the most dangerous human malarial parasite. Resistance of this pathogen to known drugs is increasing, and compounds with different modes of action are urgently needed. One promising drug target is the enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) of the methylerythritol 4-phosphate (MEP) pathway for which we have previously identified three active compound classes against Mycobacterium tuberculosis. The close structural similarities of the active sites of the DXPS enzymes of P. falciparum and M. tuberculosis prompted investigation of their antiparasitic action, all classes display good cell-based activity. Through structure-activity relationship studies, we increased their antimalarial potency and two classes also show good metabolic stability and low toxicity against human liver cells. The most active compound 1 inhibits the growth of blood-stage P. falciparum with an IC50 of 600 nM. The results from three different methods for target validation of compound 1 suggest no engagement of DXPS. All inhibitor classes are active against chloroquine-resistant strains, confirming a new mode of action that has to be further investigated.


Assuntos
Antimaláricos , Malária Falciparum , Tiazóis , Humanos , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Cloroquina , Antimaláricos/farmacologia , Antimaláricos/química
15.
Biomed Res Int ; 2024: 6697728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380127

RESUMO

Antimalarial resistance has hampered the effective treatment of malaria, a parasitic disease caused by Plasmodium species. As part of our campaign on phenotypic screening of phenylhydrazones, a library of six phenylhydrazones was reconstructed and evaluated for their in vitro antimalarial and in silico receptor binding and pharmacokinetic properties. The structures of the phenylhydrazone hybrids were largely confirmed using nuclear magnetic resonance techniques. We identified two compounds which exhibited significant antimalarial potential against the ring stage (trophozoite) of 3D7 chloroquine-sensitive (CS) strain and DD2 chloroquine-resistant (CR) strains of Plasmodium falciparum with monosubstituted analogs bearing meta or para electron-donating groups showing significant activity in the single-digit micromolar range. Structure activity relationship is presented showing that electron-donating groups on the substituent hydrophobic pharmacophore are required for antimalarial activity. Compounds PHN6 and PHN3 were found to be the most potent with pIC50s (calculated form in vitro IC50s) of 5.37 and 5.18 against 3D7 CS and DD2 CR strains, respectively. Our selected ligands (PHN3 and PHN6) performed better when compared to chloroquine regarding binding affinity and molecular stability with the regulatory proteins of Plasmodium falciparum, hence predicted to be largely responsible for their in vitro activity. Pharmacokinetic prediction demonstrated that the phenylhydrazones may not cross the blood-brain barrier and are not P-glycoprotein (P-gp) substrates, a good absorption of 62% to 69%, and classified as a category IV compound based on toxicity grading.


Assuntos
Antimaláricos , Hidrazonas , Malária , Humanos , Antimaláricos/uso terapêutico , Plasmodium falciparum , Cloroquina/uso terapêutico , Malária/parasitologia
16.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338688

RESUMO

Chloroquine has been used as a potent antimalarial, anticancer drug, and prophylactic. While chloroquine is known to interact with DNA, the details of DNA-ligand interactions have remained unclear. Here we characterize chloroquine-double-stranded DNA binding with four complementary approaches, including optical tweezers, atomic force microscopy, duplex DNA melting measurements, and isothermal titration calorimetry. We show that chloroquine intercalates into double stranded DNA (dsDNA) with a KD ~ 200 µM, and this binding is entropically driven. We propose that chloroquine-induced dsDNA intercalation, which happens in the same concentration range as its observed toxic effects on cells, is responsible for the drug's cytotoxicity.


Assuntos
Antimaláricos , Antineoplásicos , Cloroquina/toxicidade , DNA/química , Antineoplásicos/toxicidade , Calorimetria
17.
Elife ; 132024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323802

RESUMO

A single 300 mg dose of tafenoquine, in combination with chloroquine, is currently approved in several countries for the radical cure (prevention of relapse) of Plasmodium vivax malaria in patients aged ≥16 years. Recently, however, Watson et al. suggested that the approved dose of tafenoquine is insufficient for radical cure, and that a higher 450 mg dose could reduce P. vivax recurrences substantially (Watson et al., 2022). In this response, we challenge Watson et al.'s assertion based on empirical evidence from dose-ranging and pivotal studies (published) as well as real-world evidence from post-approval studies (ongoing, therefore currently unpublished). We assert that, collectively, these data confirm that the benefit-risk profile of a single 300 mg dose of tafenoquine, co-administered with chloroquine, for the radical cure of P. vivax malaria in patients who are not G6PD-deficient, continues to be favourable where chloroquine is indicated for P. vivax malaria. If real-world evidence of sub-optimal efficacy in certain regions is observed or dose-optimisation with other blood-stage therapies is required, then well-designed clinical studies assessing safety and efficacy will be required before higher doses are approved for clinical use.


Assuntos
Aminoquinolinas , Antimaláricos , Malária Vivax , Humanos , Antimaláricos/uso terapêutico , Cloroquina/uso terapêutico , Malária Vivax/tratamento farmacológico , Primaquina/uso terapêutico , Metanálise como Assunto
18.
Anal Chem ; 96(8): 3345-3353, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38301154

RESUMO

Malaria is a severe disease caused by cytozoic parasites of the genus Plasmodium, which infiltrate and infect red blood cells. Several drugs have been developed to combat the devastating effects of malaria. Antimalarials based on quinolines inhibit the crystallization of hematin into hemozoin within the parasite, ultimately leading to its demise. Despite the frequent use of these agents, there are unanswered questions about their mechanisms of action. In the present study, the quinoline chloroquine and its interaction with the target structure hematin was investigated using an advanced, highly parallelized Raman difference spectroscopy (RDS) setup. Simultaneous recording of the spectra of hematin and chloroquine mixtures with varying compositions enabled the observation of changes in peak heights and positions based on the altered molecular structure resulting from their interaction. A shift of (-1.12 ± 0.05) cm-1 was observed in the core-size marker band ν(CαCm)asym peak position of the 1:1 chloroquine-hematin mixture compared to pure hematin. The oxidation-state marker band ν(pyrrole half-ring)sym exhibited a shift by (+0.93 ± 0.13) cm-1. These results were supported by density functional theory (DFT) calculations, indicating a hydrogen bond between the quinolinyl moiety of chloroquine and the oxygen atom of ferric protoporphyrin IX hydroxide (Fe(III)PPIX-OH). The consequence is a reduced electron density within the porphyrin moiety and an increase in its core size. This hypothesis provided further insights into the mechanism of hemozoin inhibition, suggesting chloroquine binding to the monomeric form of hematin, thereby preventing its further crystallization to hemozoin.


Assuntos
Antimaláricos , Hemeproteínas , Malária , Humanos , Antimaláricos/farmacologia , Cloroquina/farmacologia , Cloroquina/química , Hemina/química , Hemeproteínas/química , Análise Espectral , Plasmodium falciparum
19.
Acta Trop ; 252: 107143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331084

RESUMO

Leishmaniasis is an endemic disease in more than 90 countries, constituting a relevant public health problem. Limited treatment options, increase in resistance, and therapeutic failure are important aspects for the discovery of new treatment options. Drug repurposing may accelerate the discovery of antiLeishmanial drugs. Recent tests indicating the in vitro potential of antimalarials Leishmania resulted in the design of this study. This study aimed at evaluating the susceptibility of Leishmania (L.) amazonensis to chloroquine (CQ) and quinine (QN), alone or in combination with amphotericin B (AFT) and pentamidine (PTN). In the in vitro tests, first, we evaluated the growth inhibition of 50 % of promastigotes (IC50) and cytotoxicity for HepG2 and THP-1 cells (CC50). The IC50 values of AFT and PNT were below 1 µM, while the IC50 values of CQ and QN ranged between 4 and 13 µM. Concerning cytotoxicity, CC50 values ranged between 7 and 30 µM for AFT and PNT, and between 22 and 157 µM for the antimalarials. We also calculated the Selectivity Index (SI), where AFT and PTN obtained the highest values, while the antimalarias obtained values between 5 and 12. Both antimalarials were additive (Æ©FIC 1.05-1.8) in combination with AFT and PTN. For anti-amastigote activity, the drugs obtained the following ICA50 values: AFT (0.26 µM), PNT (2.09 µM), CQ (3.77 µM) and QN (24.5 µM). In the in vivo tests, we observed that the effective dose for the death of 50 % of parasites (ED50) of AFT and CQ were 0.63 mg/kg and 27.29 mg/kg, respectively. When combining CQ with AFT, a decrease in parasitemia was observed, being statistically equal to the naive group. For cytokine quantification, it was observed that CQ, despite presenting anti-inflammatory activity was effective at increasing the production of IFN-γ. Overall, our data indicate that chloroquine will probably be a candidate for repurposing and use in drug combination therapy.


Assuntos
Antimaláricos , Leishmania , Leishmaniose , Humanos , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Quinina/farmacologia , Quinina/uso terapêutico , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Leishmaniose/tratamento farmacológico , Plasmodium falciparum
20.
Rev Saude Publica ; 58: 06, 2024.
Artigo em Inglês, Português | MEDLINE | ID: mdl-38422280

RESUMO

OBJECTIVE: Assess the correlation between the sales of two drugs with no proven efficacy against covid-19, ivermectin and chloroquine, and other relevant variables, such as Google® searches, number of tweets related to these drugs, number of cases and deaths resulting from covid-19. METHODS: The methodology adopted in this study has four stages: data collection, data processing, exploratory data analysis, and correlation analysis. Spearman's method was used to obtain cross-correlations between each pair of variables. RESULTS: The results show similar behaviors between variables. Peaks occurred in the same or near periods. The exploratory data analysis showed shortage of chloroquine in the period corresponding to the beginning of advertising for the application of these drugs against covid-19. Both drugs showed a high and statistically significant correlation with the other variables. Also, some of them showed a higher correlation with drug sales when we employed a one-month lag. In the case of chloroquine, this was observed for the number of deaths. In the case of ivermectin, this was observed for the number of tweets, cases, and deaths. CONCLUSIONS: The results contribute to decision making in crisis management by governments, industries, and stores. In times of crisis, as observed during the covid-19 pandemic, some variables can help sales forecasting, especially Google® and tweets, which provide a real-time analysis of the situation. Monitoring social media platforms and search engines would allow the determination of drug use by the population and better prediction of potential peaks in the demand for these drugs.


Assuntos
Tratamento Farmacológico da COVID-19 , Cloroquina , Ivermectina , Humanos , Brasil/epidemiologia , Cloroquina/uso terapêutico , COVID-19/epidemiologia , Ivermectina/uso terapêutico , Pandemias , Ferramenta de Busca , Comércio , Mídias Sociais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...